
2023 National Astronomy Competition

1 Instructions (Please Read Carefully)

The top 5 eligible scorers on the NAC will be invited to represent USA at the next IOAA. In order to qualify
for the national team, you must be a high school student with US citizenship or permanent residency.

This exam consists of 3 parts: Short Questions, Medium Questions and Long Questions.

The maximum number of points is 240 points.

The test must be completed within 2.5 hours (150 minutes).

Please solve each problem on a blank piece of paper and mark the number of the problem at the top of the
page. The contestant’s full name in capital letters should appear at the top of each solution page. If the
contestant uses scratch papers, those should be labeled with the contestant’s name as well and marked as
“scratch paper” at the top of the page. Scratch paper will not be graded. Partial credit will be available
given that correct and legible work was displayed in the solution.

This is a written exam. Contestants can only use a scientific or graphing calculator for this exam. A table of
physical constants will be provided. Discussing the problems with other people is strictly prohibited
in any way until the end of the examination period on April 1st. Receiving any external help during
the exam is strictly prohibited. This means that the only allowed items are: a calculator, the provided table
of constants, a pencil (or pen), an eraser, blank sheets of papers, and the exam. No books or notes are al-
lowed during the exam. Exam is proctored and recorded. You are expected to have your video on at all times.

We acknowledge the following people for their contributions to this year’s exam:

Wesley Antônio Machado Andrade de Aguiar, Erez Abrams, Lucas Pinheiro, Sahil Pontula, Joe McCarty,
Hagan Hensley, Leo Yao, and Andrew Liu.



2 Short Questions - 35 points

1. (10 points) White Dwarfs are stars in their last stage of life that are prevented from collapsing only
by the electron degeneracy pressure. This pressure is an outward one exerted by the electrons inside the
star, which are fermions subject to the Pauli exclusion principle. We can find its value by the following
formula, which is derived from the theory of fermion gases:

pelectron “
2

3
u “

ℏ2

5me
p3π2q2{3n5{3

where n is the number density of electrons in the star. This pressure balances the inward gravitational
pressure, which is given by

pgrav “ ´
Ω

3V
, Ω “ ´

3GM2

5R

where Ω is the value of the total potential energy of the star.

(a) (8 points) If the star contains nuclei with atomic number Z and mass number A, what is the
density value of the white dwarf in function of its total mass M , A, Z, and other fundamental
constants?

(b) (2 points) Find what is the value of k in the relation M9V k, where V is the volume of the star.

Solution:

(a) To obtain the electron pressure in function of the density, we can use that n “ Ne{V “

pZNq{V , where N is the number of atoms in the star. Since we can consider that just the
protons and the neutrons contribute to the mass of an atom, we can say that N “ M{pAmpq,

and so n “
Zρ

Amp
. Besides that, since ρ “

M
4
3πR

3
,

R3 “
3M

4πρ
ñ R “

ˆ

3M

4πρ

˙1{3

Therefore, we can balance the electron and the gravitational pressure (the condition for the
existence of the white dwarf) to obtain the value of the density:

pelectron “ pgrav ñ
ℏ2

5me
p3π2q2{3

ˆ
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˙5{3

“
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ˆ
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ñ ρ “
4G3M2m3

e

27π3ℏ6

ˆ

Amp

Z

˙5

(b) From the last item, we see that ρ9M2. So, since ρ “ MV ´1, MV ´19M2 ñ M9V ´1.

Therefore, k “ ´1 , and MV is a constant for white dwarfs.

2. (10 points) The Large Magellanic Cloud (LMC) is a galaxy with a redshift of z “ 8.75 ˆ 10´4.

(a) (4 points) What is the radial velocity of the LMC with respect to the Solar System? Is is getting
closer or farther from the Solar System?
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(b) (4 points) Hubble’s Law is a well-known method of calculating the distance to a galaxy. Using
this approach, calculate the distance between the LMC and the Solar System.

(c) (2 points) Is Hubble’s Law a reasonable method to determine the distance to the LMC? Explain
your answer.

Solution:

(a) It is possible to use the following expression to determine LMC’s radial velocity:

z “
v

c

v “ cz

v “ 2.998 ˆ 108 ˆ 8.75 ˆ 10´4

v “ 2.62 ˆ 105 m/s

Since the redshift is positive, the galaxy is getting farther from the Solar System.

(b) Using Hubble’s Law:

v “ H0d

d “
v

H0

d “
2.62 ˆ 105

70 ˆ 103

d “ 3.7Mpc

(c) Hubble’s Law is only valid for distant galaxies. The redshift for the LMC is extremely low,
which indicates that it is a close galaxy. The problem of using Hubble’s Law with nearby
galaxies is that gravitational effects have a significant impact on the velocities, which makes
a calculation that only takes into account the velocity due to the expansion of the Universe
imprecise. For distant galaxies, these effects are negligible compared to the velocity that results
from the expansion of the Universe, but this is not the case for the LMC.
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3. (15 points) Culmination Time

(a) (12 points) In Lubbock, Texas (λ “ 101˝ 531 W, ϕ “ 33˝ 351 N) on September 22nd, what is the
local time of upper culmination of Vega (α “ 18 hr 37min, δ “ 38˝ 471)? The time zone of Lubbock
is CDT, UTC´5. Assume that the equation of time is 6min at the relevant time, in the convention
of solar time minus mean time.

(b) (3 points) Name the two primary factors which contribute to the equation of time, and give a
brief one-sentence explanation for why each causes solar time to differ from mean time.

Solution:

(a) September 22th is the autumnal equinox, so the right ascension of the Sun is 12 hr. (2 point)

By Θ “ h ` α, where Θ is the local sidereal time, h is the hour angle, and α is the right
ascension, the local sidereal time at upper culmination of Vega (hour angle 0) is Θ “ αVega,
so the hour angle of the Sun is αVega ´ 12 hr and the local solar time is αVega. (3 points)

Applying the equation of time (ET ), mean solar time is αVega ´ ET . (2 points)

Greenwich mean solar time is therefore αVega ´ ET ´ λ, using the convention of longitude as
positive if east. In order to convert time zones, we must subtract 5 hr. (Note that UTC and
GMT are not exactly identical, but they agree to within a second, so the difference is irrelevant
here.) (3 points)

Performing the calculations,

18 hr 37min ´ 6min ` 101˝ 531 ´ 5 hr “ 20:19 .

(2 point)

(b) The two primary factors are: (1.5 point each - 0.5 point for naming the effect and
another 1 point for the explanation)

• Eccentricity of the Earth’s orbit: the actual Sun doesn’t move across the sky at a constant
angular speed relative to the background stars, unlike the mean Sun.

• Obliquity of the ecliptic: the actual Sun is on the ecliptic, whereas the mean Sun is on
the equator; the angular velocity of the Sun isn’t always on and parallel to the equator,
which contributes further to non-uniformity of the increase in right ascension.
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3 Medium Questions - 65 points

1. (20 points) Hyperfine splitting

The 21cm spectral line of hydrogen is a result of the interaction between the electron’s and proton’s
quantum mechanical spin (known as hyperfine splitting). The spins can be either aligned or anti-
aligned. When a hydrogen atom decays from the higher energy state to the lower energy state, a photon
is emitted with energy equal to the energy difference in these two states.

The intrinsic magnetic moment of the electron µe is approximately equal to the Bohr magneton µB “
eℏ
2me

, and the intrinsic magnetic moment of the proton µp is roughly 2.8 eℏ
2mp

. Electrons and protons (and

any particles with spin 1
2 ) have permanent magnetic dipole moments m⃗ with magnitude equal to the

intrinsic magnetic moment.

(a) (5 points) Consider two classical magnetic dipoles m⃗1, m⃗2 separated by a distance r⃗ “ rr̂. The
magnetic field from a perfect magnetic dipole m⃗ is

B⃗ “
µ0

4π

3r̂pm⃗ ¨ r̂q ´ m⃗

r3

The potential energy of a magnetic dipole in an external magnetic field B⃗ (e.g. the field created by

the other dipole) is U “ ´m⃗ ¨ B⃗.

Using these two formulas together, what is the energy Uint of the interaction between two magnetic
dipoles m⃗1, m⃗2 separated by a distance r⃗ “ rr̂?

(b) (6 points) In our case, we can assume that r is the Bohr radius a0, and both m⃗1 and m⃗2 are
oriented perpendicularly to r⃗. What is the interaction energy Uint between the magnetic moments
of the proton and the electron? Write your answer in terms of m⃗p ¨ m⃗e.

(c) (2 points) Which state is the lower energy state: the state where the spins are aligned, or the
state where the spins are anti-aligned?

(d) (7 points) The energy of the photon emitted by the transition between these two states is equal
to the energy difference in the two states. What value would you predict for the wavelength of the
21cm spectral line? (You should get the right answer to within an order of magnitude, but note
that we are treating a quantum mechanical system classically and so there will be large errors.)

Solution:

(a) The interaction energy between the pair of magnetic dipoles is equal to the potential energy
of one of the dipoles due to the other dipole’s magnetic field. We can write this as

Uint “ ´m⃗1 ¨ B⃗pm⃗2q “ ´m⃗1 ¨
µ0

4π

3r̂pm⃗2 ¨ r̂q ´ m⃗2

r3

“ ´
µ0

4π

3pm⃗1 ¨ r̂qpm⃗2 ¨ r̂q ´ m⃗1 ¨ m⃗2

r3

It’s good to check - this expression is symmetrical in m⃗1 and m⃗2, so it didn’t matter which of
the dipoles we used to do the calculation.

(b) Since m⃗1 and m⃗2 are perpendicular to r⃗, the m⃗ ¨ r⃗ terms vanish and the expression simplifies
dramatically. If we plug in a0 for the radius r, then the interaction energy becomes:

Uint “
µ0

4πa30
m⃗p ¨ m⃗e
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(c) m⃗p ¨ m⃗e is positive if the spins are aligned and negative if they are anti-aligned. Since Uint is
proportional to m⃗p ¨ m⃗e, we can see that the higher energy state has the spins aligned while
the lower energy state has the spins anti-aligned.

(d) The magnitude of m⃗ for the electron or proton is just equal to the intrinsic magnetic moment.
This means that the aligned state has interaction energy

E` “
µ0

4πa30
µeµp

and the anti-aligned state has interaction energy

E´ “ ´
µ0

4πa30
µeµp

The energy of the emitted photon is equal to the energy difference in these two states, which
is

∆E “ E` ´ E´ “ 2
µ0

4πa30
µeµp “

µ0

4πa30

2.8peℏq2

2memp
“ 1.1 ¨ 10´6eV

The energy of a photon is E “ hc
λ , so the corresponding wavelength of this photon is 112cm.

(As it turns out, this is off from the correct value by a factor of exactly 16
3 , which can only be

explained by quantum mechanics. Specifically, the wavefunctions of the nucleus and electron
actually overlap, whereas we assumed they were discrete point particles with a well-defined
separation.)

2. (20 points) Astrophysics studies both the smallest and largest scales of physics. The latter is one of
the main focuses of cosmology. Here, we look into the former - the role of quantum mechanics in the
astrophysics of stars. For this problem, assume that the Sun’s core has a proton number density of
nc « 6 ˆ 1031 m-3 and temperature Tc « 15 million K.

(a) (2 points) Suppose that two hydrogen nuclei (protons) are flying towards each other in equal and
opposite directions, with an impact parameter (distance of closest approach) of d « 1 fm. If all of
this initial kinetic energy came from the average thermal energy of an ideal gas, what would be the
requisite temperature Tclassical for “fusion” to occur?

In quantum mechanics, particles are described by wavefunctions ψ, whose squared norms |ψ|2 govern
the probability of finding the particle in a particular state (e.g., having a certain position, momentum,
or energy). Particles are said to behave as waves with a wavelength given by the de Broglie wavelength
λ “ h{p, where p is the particle’s momentum and h is Planck’s constant. It’s also convenient to define
p “ ℏk, where k is the wavevector and ℏ “ h{p2πq.

(b) (2 points) Evaluate the de Broglie wavelength λdB in fm (1 fm = 10´15 m) for a proton with the
average thermal energy of an ideal gas at the temperature of the Sun’s core, Tc.

In Figure 1, we see that it’s classically impossible for a nucleus to make it through the potential barrier
with U0 ą E (potential energy larger than the total energy). However, quantum mechanics gives a
nonzero probability to “tunnel” through the barrier. To solve for ψ in the regions before, inside, and
after the barrier, we can use an ansatz ψpxq “ Aeikpxqx, where A is a normalization constant and

kpxq “

b

2m
ℏ2 pE ´ V pxqq.

(c) (2 points) In which regions of Figure 1 is k purely real? Purely imaginary?

(d) (2 points) Modeling the Sun’s main fusion reaction as a single process where two protons and two
neutrons combine to form a He-4 nucleus, calculate how much energy is released in a single fusion
reaction.
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(e) (6 points) Not every proton-proton collision results in fusion. Calculate the probability Pfusion of
fusion per proton necessary to sustain the Sun’s current luminosity. You may assume 1% of the
Sun’s mass is comprised of protons available for fusion. For this part, treat the fusion reaction as
a collision between two protons (i.e. ignore the neutrons). Assume the cross section for collision is
given by πλ2dB where λdB is the de Broglie wavelength corresponding to being in thermal equilibrium
at temperature Tc.

(f) (6 points) Consider one proton (moving) in the potential of the other (at rest) in the simplified
1D model of Figure 1. Suppose that U0 is given by the Coulomb repulsion energy of the two
protons at a distance d « 1 fm and that b is the approximate width of the barrier. Here, b is the
impact parameter for a proton repelled by the Coulomb force with initial kinetic energy (outside the
barrier) equal to the average thermal energy E. Assuming the potential energy V pxq “ 0 outside
the barrier, find the temperature Tquantum such that the probability that protons can tunnel through
the barrier and fuse is Pfusion.

Figure 1: Quantum tunneling.

Solution:

(a) We have 2K “ 3kBTclassical “ e2

4πϵ0d
, from which Tclassical « 5.6 ˆ 109 K.

(b) We have 3
2kBTc «

ph{λdBq
2

2mp
, from which λdB « 650 fm.

(c) Before and after the barrier k is purely real, inside the barrier it is imaginary.

(d) The mass defect for the simplified proton-proton fusion reaction is ∆m “ 29.7 MeV/c2, so
∆E “ ∆mc2 « 4.75 ˆ 10´12 J are released per fusion reaction.

(e) The collision rate is given by Rc “ ncπλ
2
dBvRMS « 5 ˆ 1013 s-1, where vRMS “

a

3kBTc{mp.
Thus N “ L{∆E “ 8 ˆ 1037 s-1 is the number of fusion reactions per second (where L is the
Sun’s luminosity). Finally, this rate per proton is N{p0.01M{mpq « 6.74 ˆ 10´18 s-1. Thus
Pfusion « 10´31.
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(f) Transmission through the barrier goes as e´2αb, where α “

b

2m
ℏ2 pU0 ´ Eq is the imaginary

wavevector, U0 « 2.31 ˆ 10´13 J is given by the Coulomb repulsion energy at d « 1 fm, E is
given by the average thermal kinetic energy, and b “ e2{p4πϵ0Eq is the width of the well. Let
P denote the probability for fusion. Then,

P “ exp

˜

´2

c

2mU0

ℏ2
e2

4πϵ0E

¸

.

Here, we have made the assumption that U0 " E, whose validity we can check after solving.
With P “ 10´31 and E “ 3

2kBT , Tquantum « 80 million K. Note that Tquantum{Tclassical «

E{U0 « 0.01, so our assumption is valid.

Note: A more rigorous solution to this problem would involve modeling the potential more re-
alistically than a square well. For example, approaches include modeling long-range potentials
as power laws or even just effective square wells (though much more rigorously than we have
done here). Furthermore, the physics is more interesting (and realistic) in 3D, where consider-
ations of angular momentum and effective potentials become important. Common methods in
quantum mechanics such as the WKB method are used in problems like this and, in general,
one would need to carefully integrate over the barrier to derive the transmission coefficient.

3. (25 points) Into the Wilds

You are an astronaut exploring uncharted parts of space in your trusty spaceship, when suddenly you
fall into a magical portal to another universe!

Looking for a way back home, you fly to the nearest solar system. Just like normal solar systems, it is
home to several planets in orbit around a star - except with one minor difference: it’s miniature! The
star is only 4 kilometers in diameter, and the whole solar system could fit within a small country back
home on Earth.

You know your astrophysics well enough to know that this should be impossible! The only explanation
is that some law of physics works differently in this universe. Since you’re still alive, chemistry must
be unchanged, so quantum mechanics and electromagnetism must work the same as you’re used to.
Therefore, the only thing that can be different is gravity.

You decide to do some experiments around the solar system to figure out exactly what is different about
gravity here.

(a) (10 points) First you measure the orbital periods ti and orbital semi-major axes ai of the planets
in the solar system. You name the planets P1 through P5, because you are incredibly unoriginal.
Your data is as follows:

Planet a (km) t (minutes)

P1 5.1 1:51
P2 9.0 4:10
P3 12.1 6:38
P4 17.0 11:02
P5 20.3 14:46

Based on this data, do you think that gravity here follows an inverse square law? Justify your
answer with calculations and/or drawing an appropriate plot. (You needn’t be too formal with
statistics here, any well-reasoned argument will get full credit.)

(b) (3 points) If the mass of the star is M and the gravitational constant in this universe is G1, then
what is G1M?
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This is a good start! Unfortunately, without a known mass, you can’t determine the gravitational
constant G1. You decide to give the planets a closer look to see what else you can find out. You’ll start
from the outermost and work your way in.

(c) (5 points) After narrowly escaping being eaten by P5’s local fauna, you penetrate the stormy
atmosphere of P4 to find that it’s made almost entirely of water (ρ “ 997 kg

m3 ) with a radius of 500
m. While standing in your ship floating on the water’s surface, you experience a heavy gravitational
pull - 2 times what you’re used to on Earth.

What is the gravitational constant in this universe?

(d) (2 points) What is the mass of this solar system’s star?

(e) (5 points) You notice that this star looks yellowish-orange, suggesting its surface temperature is a
little lower than that of the Sun. Taking a spectrum, you measure that this star’s spectral radiance
peaks at a wavelength of 916 nm.

The lifetime of a star can be roughly estimated based on its luminosity and the mass of fuel it has
available to burn*. Use a simple scaling argument to roughly estimate the lifetime of this solar
system’s sun. Explain your reasoning.

(Hint: use our Sun’s lifetime of 1010 years as a reference point.)

*A more careful calculation shows that the temperature at the core of the star wouldn’t actually be
enough to ignite fusion, so nuclear physics must work differently here in order for fusion to be possible.
Let’s ignore that for the sake of this question, though.

Solution:

(a) If gravity follows an inverse square law, then Kepler’s third law should hold. This means that
t2

a3 should be a constant for objects orbiting around the same mass.

Planet a (km) t (minutes) t2

a3 (10´2 min2 km´3)

P1 5.1 1:51 2.58
P2 9.0 4:10 2.38
P3 12.1 6:38 2.48
P4 17.0 11:02 2.47
P5 20.4 14:46 2.57

The mean value is t2

a3 “ 2.50 ¨ 10´2 min2 km´3. The standard deviation of these values is
0.08 ¨ 10´2 min2 km´3, which is comparatively small and probably just the result of random

measurement errors. This means that the data supports t2

a3 being constant, which implies that
gravity follows an inverse square law.

(You can do much more careful statistics with this data, but any well-reasoned argument can
get full credit.)

Alternative solution: if Kepler’s 3rd law is true, then plotting logpaq against logptq should
show a linear relationship with a slope of 3

2 . You can just draw the graph and show it visually.
If you were to perform a linear regression, the slope of the line is 1.499 ˘ 0.017, which is in
agreement with the expected value of 3

2 .

(b) From Kepler’s third law, we can write

t2

a3
“

4π2

G1M
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In the previous part, we found the value of t2

a3 to be approximately t2

a3 “ 2.50 ¨ 10´2 min2

km´3.

Thus, G1M “ 4π2 a3

t2

“ 4.39 ¨ 108m3s´2

(c) The mass of P4 is just

m “
4

3
πr3ρ “ 5.22 ¨ 1011 kg

The gravitational acceleration at the surface is a “ G1m
r2 . We can invert this to solve for G1:

G1 “ ar2

m . The measured gravitational acceleration is a “ 2p9.81 m s´2q.

This means that the value of G1 is 9.4 ¨ 10´6 m3 kg´1 s´2.

(d) We found G1M and now we have G1, so calculating M is straightforward:

M “
G1M

G1
“ 4.7 ¨ 1013 kg

(e) Note that you can’t use empirically derived scaling relations for the lifetime of a star (e.g.
T9M´2.5) since G1 is different!

The scaling argument just comes from conservation of energy: a star’s life ends when it burns
through all its fuel, and the rate of burning fuel is proportional to its luminosity. Therefore a
star’s lifetime scales roughly as its mass divided by its luminosity.

For this star, we can calculate the luminosity using Wien’s law and the Stefan-Boltzmann law:

Lstar “ 4πr2σT 4 “ 4πr2σ

ˆ

2898µm K

916nm

˙4

“ 3.23 ¨ 1014W

So the lifetime is

Tstar “ Td

Mstar

Lstar

Ld

Md

“ 3 ¨ 105 years.

Any answer around this value is fine due to rounding.

Most data from this problem was taken from the wonderful 2019 video game Outer Wilds.

4 Long Questions - 140 points

1. (45 points) The Sundial II

After gaining an understanding of a sundial, and how the path of the shadow is a straight line on the
equinoxes running from due West to due East, Leo now wants to create his own.

At 6am on March 20th, as the Sun is rising, Leo, who is at p40˝N, 75˝Wq, plants a (straight) stick
vertically on the ground. At that moment, he marks out a (finite) line on the ground in the direction
of the shadow of the stick at that moment, labeling it with the current time. Every hour afterwards, on
the hour, he marks out a new line in the current direction of the shadow.

For the following two parts, either show a calculation or explain your answer for credit. Calculating
specific values is not necessary, but may help with later parts.

(10 points)
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(a) Is the angle between the lines corresponding to 12pm and 1pm greater than, equal to, or less than
15˝?

(b) Is the angle between the lines corresponding to 5pm and 6pm greater than, equal to, or less than
15˝?

At 6pm, after drawing his last line, the sun sets. Leo starts cleaning up his setup, taking down the
stick. To check his calculations against experiment, Leo measures the angles between pairs of lines on
the ground. Using a very precise protractor, he gets the following values (rolling sums are also provided):

Lines Angle (degrees) From 6am (degrees)

6am-7am 9.00570 9.00570
7am-8am 9.48468 18.49038
8am-9am 10.90026 29.39064
9am-10am 13.56767 42.95832
10am-11am 17.77405 60.73237
11am-12pm 22.66646 83.39883
12pm-1pm 24.81144 108.21027
1pm-2pm 21.90336 130.11363
2pm-3pm 16.95555 147.06918
3pm-4pm 13.00713 160.07630
4pm-5pm 10.58101 170.65731
5pm-6pm 9.34269 180.00000

Notably, he finds that they deviate from the values he expects! After frantically checking his calculations
and measurements and finding no discrepancies, Leo suspects that the stick might have been slightly
tilted. Unfortunately, he took down the stick already, and so can no longer measure it directly.

To help Leo out, we’d like to reconstruct the parameters of the stick tilt. As you work through the
following parts, keep in mind this overall goal; it may help to think through all the steps first before
proceeding. Ignore atmospheric refraction and the equation of time.

(35 points)

(c) To start, define a 2-D coordinate system for the ground, where the x-axis points due North and the
y-axis points due East. Choose and clearly indicate an appropriate origin.

(d) Choose a specific time during the day when the Sun is above the horizon. In your coordinate
system, compute the coordinates of the tip of the shadow. Clearly indicate the chosen time and
any assumptions made, and justify assumptions if they are not general.

(e) From these coordinates and other information, find a condition on the location of the other end of
the stick. Provide your answer as a linear equation in the form y “ mx` b for some m, b.

(f) Determine more conditions as necessary, and solve to find the coordinates of the other end of the
stick.

(g) Determine the angle, from the vertical, that the stick was tilted, and in what direction.

Depending on method chosen, points on subparts may vary. Due to small values involved, it is
recommended to carry calculations to at least 4 decimal places. Answers to the final part
will be integers. No credit given for guesses without justification.

Solution:
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(a) The first important observation to make is, because the stick is vertical and perpendicular to
the ground, the line of the shadow points in a direction directly opposite the azimuth of the
Sun at that moment. Therefore, we can compare angles between lines by comparing changes
in azimuth of the Sun between two times.

As March 20th is the spring equinox (which can also be deduced as the problem mentions the
Sun rising at 6am and setting at 6pm), the Sun travels along a great circle in the sky at a
constant rate of 15˝ per hour. Let C12, C1, C5, C6 be points along the great circle where the
Sun is at 12pm, 1pm, 5pm, 6pm respectively. As the Sun rises at 6am and sets at 6pm, we
know solar time corresponds with local time (which is also confirmed as 75˝W is perfectly in
the center of the UTC-5 time zone). Therefore, the Sun is on the meridian at 12pm and on
the horizon due west at 6pm.

Extend the arcs from Z through C12, C1, C5, C6 to meet the horizon at H12 “ S,H1, H5, H6 “

C6 “ W . Then changes in azimuth correspond to arcs along the horizon: The arc H12H1 is
the angle between 12pm and 1pm and has length θ1, and the arc H5H6 is the angle between
5pm and 6pm and has length θ2. The arc lengths θ1, θ2 also are the same as the corresponding
angles from Z.

As one possible solution, consider the triangle ZC12C1. As =ZC12C1 “ 90˝, then by the
spherical law of sines:

sin θ1
sin 15˝

“
sin 90˝

sinZC1

But as sin 90˝ “ 1 and ZC1 ă 90˝, we have that the right-hand side is greater than 1 and
therefore θ1 ą 15˝.
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Many other solutions involving spherical triangles are possible (arguments from other parts of
the solution can also be adapted to this part).

(b) As one possible solution, consider the triangle C5H5W . As =C5H5W “ 90˝, then by the
spherical law of cosines:

cosC5H5 cos θ2 “ cos 15˝

But as cosC5H5 ă 1, we then have cos θ2 ą cos 15˝ and therefore θ2 ă 15˝.

Again, other choices of spherical triangles leading to a correct solution are possible.

(c) From this point onwards, there are two similar but slightly different ways to solve the problem,
depending on choice of origin. Points on subparts differ between the methods, but the overall
amount of work needed is about the same. We will be calling these methods ”Tip of stick”
and ”Base of stick”.

Tip of stick: Drop a perpendicular from the tip of the stick to the ground, and set the point
directly below the tip of the stick to be the origin.

While this definition initially seems more contrived, note that the position of the tip of the
shadow depends only on the position of the tip of the stick, and the Sun. Therefore, we can
directly write down positions in our coordinate system of tips of shadows.

Base of stick: Set the base of the stick to be the origin.

This may be the more immediately apparent choice, and has the advantage that we immediately
know what directions shadows point in. However, this method is more difficult to follow
through with; an astute observation is needed later to make progress.

(d) Tip of stick:

In order to determine lengths of shadows of the ground, we first need to know the height of
the stick tip. Therefore, introduce a variable h0 for the height of the tip of the stick above the
ground.

We will carry through h0 for the rest of the solution. However, note that the problem is invari-
ant under rescaling (no specific lengths are given, and h0 divides out at the end). Therefore,
it is valid to set h0 to an arbitrary positive value, as long as it is divided out at the end.
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Start by computing the altitude and azimuth of the Sun at a given time. For some time T
hours after noon, where T P p´6, 6q: Let C be the position of the Sun (along the celestial
equator) at the time. Then, as the Sun passes 15˝ of angle per hour, we have:

EC “ 15˝pT ` 6q

As angle =ZEC subtends arc ZC12 “ ϕ where EC12 “ ZE “ 90˝, we must have =ZEC “ ϕ.
Then, we can apply the spherical law of cosines on triangle ZEC:

cosZC “ cosEZ cosEC ` sinEZ sinEC cos=ZEC

To get the angle of arc ZC. Then, the altitude is just 90˝ minus this angle:

h “ 90˝ ´ ZC

To find the altitude, use spherical triangle ECH, where we extend ZC to meet the horizon at
H. As =CHE is right, the sin a sin b cosC term in the spherical law of cosines disappears, so
we just have:

cosEC “ cosCH cosEH
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Then:

cosEH “
cosEC

cosEH
“

cos 15˝pT ` 6q

cosh

And as EH is the arc along the horizon starting from an azimuth of 90˝, we have a “ 90˝`EH.

As the data given in the problem is given for every hour of the day, any integer choice of T
where the Sun is above the horizon (T P t´5,´4, . . . , 5u) is valid. As one example, evaluating
these equations through for T “ 1 hour after noon gives ph, aq “ p47.72648˝, 202.62906˝q.

If the stick were perfectly vertical, the base of the stick would be at the origin, and the length
of the shadow on the ground would be given by:

l “
h0

tanh

where h0 is the height of the stick tip, and h is the altitude of the Sun.

For the specific coordinate axes given, where the x-axis points due North and the y-axis points
due East, azimuths correspond perfectly with angles from the x-axis, first rotating towards the
y-axis. Therefore, to convert between azimuths and (cartesian) coordinates, no angle offset is
necessary.

Then, as the shadow is directed opposite the Sun, the coordinates of the shadow tip would be:

(origin coordinates) ` (displacement vector of shadow) “ p´l cos a,´l sin aq

But this holds regardless of where the base of the stick is! Then we have, for the coordinates
of the shadow tip:

´
h0

tanh
pcos a, sin aq

Which for T “ 1 hour after noon gives:

p0.83910, 0.34978qh0

Base of stick:

As the shadow is a projection of a line (the stick) onto the plane of the ground, it must be a
straight line. In addition, the line of the shadow must contain the base of the stick (which is
on the ground) and the tip of the shadow.

Again, by a rescaling argument, we introduce a length l0 of a shadow on the ground. The
shadow on the ground has an angle given by the data: as the 6am line points due west, the
azimuth of the shadow is given by the angle from 6am in the last column of the table, less 90
degrees. Then for an angle from 6am measurement θ, the shadow coordinates are:

pl0 cospθ ´ 90˝q, l0 sinpθ ´ 90˝qq

Then for T “ 1 hour after noon gives:

p0.94992, 0.31251ql0

(e) Tip of stick:

Again, shadows are straight lines on the ground having an angle given by the data. Just as
azimuths can be converted directly to polar coordinates, they can also be converted directly
to slopes:

m “ tanpθ ´ 90˝q
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Then, to find the intercept b, we just need to substitute in our known coordinate of the shadow
tip px0, y0q:

y0 “ mx0 ` b ùñ b “ y0 ´mx0

Values for T “ 1 hour after noon:

m “ 0.32898, b “ 0.07373h0

Base of stick:

To work towards finding the actual tilt, consider an ideal stick, with the same tip, but standing
perfectly vertical. Then the ideal shadows cast would have the same tip as our stick, but would
be at a different angle on the ground. These shadows would intersect at a different point, the
base of the ideal stick. As the base of the ideal stick is directly below the tip of the ideal (and
our) stick, this gives us the means to find the tip of the stick in our coordinates.

We therefore want the angle of the ideal shadows. However, this is just an azimuth calculation
(described in the previous part)! Therefore:

m “ tan a

y0 “ mx0 ` b ùñ b “ y0 ´mx0

Values for T “ 1 hour after noon:

m “ 0.41685, b “ ´0.08347l0

(f) Tip of stick:

In order to solve for the coordinates px, yq, we need a second condition. At this point, we could
just choose another time during the day, compute altitude and azimuth using the same process,
and find the coordinates of another shadow tip. However, there are some clever choices and
ideas that we can use to avoid fully running through another calculation.

Consider the position of the Sun at noon, or T “ 0. Then the Sun is on the meridian, implying
that it is due South. As it is also still on the celestial equator, we can immediately write down
horizontal coordinates for the Sun:

ph, aq “ p90˝ ´ ϕ, 180˝q

Again converting this to shadow tip coordinates:

´
h0

tanh
pcos a, sin aq “ p0.83910, 0qh0

The y-coordinate is 0 as expected, as the shadow should have no deviation in the East-West
direction when the Sun faces due South. However, note that the x-coordinate is the same as
before! It turns out (and is noted at the start of the problem text) this holds true for any
choice of T : the tip of shadows trace out a straight line running West to East on the equinoxes!
(for more details as well as a proof, see last year’s second round problem with a very similar
name, where this was the core concept tested!)

Then finding the slope and line for T “ 0:

m “ ´0.11572, b “ 0.09710h0

Now that we have a pair of linear equations, we can solve for px, yq. As they are already in
slope-intercept form, it is easiest to eliminate; doing so and substituting in gives:

px0, y0q “ p0.05255, 0.09102qh0

Page 16



Base of stick:

In order to solve for the coordinates px, yq, we need a second condition. Again, we can use the
data to get an angle for the shadow on the ground. However, in order to find the coordinates
of the tip, we need the length of the second shadow, which we somehow need to relate to the
length of the first.

But this is where the ”shadow tips draw out a straight line” property proves useful! Regardless
of coordinate origin, for coordinate axes aligned the same way, the x-coordinate of the shadow
tip remains constant. As we know shadows are drawn from the origin at an angle given by the
data, this gives us enough information to find the tip of another shadow.

Taking x0 “ 0.94992l0 from earlier and taking the Sun’s position at noon (T “ 0):

y0 “ x0 tan θ “ ´0.10993l0

Then the azimuth of the Sun at noon is simply a “ 180˝, and the ideal shadow runs perfectly
North-South. Then, the base of the ideal stick must have the same y-coordinate (no East-West
deviation). This gives:

y “ y0 “ 0 ¨ x´ 0.10993l0

At this point, we can substitute our known value of y into the previous equation, giving the
solution:

px, yq “ p´0.06347,´0.10993ql0

(g) Tip of stick:

We now have the coordinates of the stick base, when the stick tip is at the origin. To get a
base to tip vector, we must first invert this vector:

p´0.05255,´0.09102qh0

Then, the direction of tilt is just the azimuth of this vector, or 240˝ .

To compute the angle o f tilt from the vertical, first compute the length of the deviation on
the ground:

a

p0.05255h0q2 ` p0.09102h0q2 “ 0.10510h0

Then, as h0 is the vertical height of the tip, we get the tilt from the vertical:

tan´1

ˆ

0.10510h0
h0

˙

“ 6˝

Base of stick:

We now have the coordinates of the stick tip, where the stick base is at the origin. Again, we
can just take the azimuth of the base to tip vector to get the tilt direction, which gives the

same answer of 240˝ .

The stick tilt is a bit more difficult, as we don’t yet have h0, the height of the stick; we have
l0, the length of a real shadow. To compute the height of the stick, we first need the length of
an ideal shadow at some time. This computation is easiest for noon, or T “ 0:

l0,ideal “ ||p0.94992,´0.10993ql0 ´ p´0.06347,´0.10993ql0|| “ 1.01338l0

Then stick height:
h0,ideal “ l0,ideal tanp90˝ ´ ϕq “ 1.20770l0
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Finally, we compute the length of the deviation on the ground:

a

p0.06347l0q2 ` p0.10993l0q2 “ 0.12693l0

And the tilt from the vertical, which gives the same answer:

tan´1

ˆ

0.12693l0
1.20770l0

˙

“ 6˝

2. (40 points) A new interstellar comet is about to enter the solar system, and Erez is really excited
to calculate some Keplerian elements on its approach and figure out where it’s going! The comet,
dubbed Scratcher Crab by the astronomical community (for no particular reason), is approaching the
solar system with a velocity of 29.8km{s from the direction of Altair, which has equatorial coordinates
α “ 19h51m, δ “ 8˝511. If the comet were to continue traveling in a straight line with its current velocity,
its closest approach to the sun would be at a distance of 1au, and on March 21st, the comet would briefly
be in superior conjunction.

For reference, here is a diagram of orbital elements. Note that the longitude of the ascending node is
measured from Aries and the argument of the periapsis is measured from the ascending node:

(a) (6 points) What are the eccentricity and semi-major axis of the orbit?

(b) (6 points) What are the inclination of the orbit and the longitude of the ascending node, both
measured with reference to the equatorial plane (not the ecliptic)?

(c) (6 points) What is the angular distance between the incoming and outgoing trajectories of the
comet?

(d) (6 points) What is the argument of the periapsis?

(e) (6 points) What are the exit coordinates of the comet (in equatorial coordinates)?

(f) (10 points) Erez wants to check his calculations by making some observations when the comet
crosses the plane of the ecliptic. At this time, what is the proper motion of the comet in the sun’s
frame of reference (not the Earth’s)? Give your answer in its equatorial components µα, µδ.
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Solution: Whenever the semi-major axis a appears in this solution, the convention of a ă 0 for
hyperbolas is chosen, but both signs should be accepted as correct. The choice of sign will lead to
sign differences in formulae involving a as well. Most answers should have three significant figures,
but an additional figure will be included in parentheses in this solution.

(a) There are a few ways we can get the eccentricity and SMA. The first is to use the vis-viva
equation to get the specific orbital energy:

ε “
v2

2
´
µ

r
“
v2

2
“ ´

µ

2a
ùñ a “ ´

µ

v2
“ ´1.49p5q ¨ 1011m

We can then combine this with the knowledge that the impact parameter equals the semi-minor
axis b “ 1au “ 1.49p6q ¨ 1011m and use conic relations to get (noting sign changes because of
hyperbola conventions):

p “ ´
b2

a

ϵ “

c

1 ´
p

a

“ 1.41p5q

An alternative way to arrive at p is to use the specific angular momentum relation p “ l2

µ
instead as in problem 26 of the first round. Also, instead of doing the eccentricity calculation
explicitly, we could note that the problem has been set up so that p “ b “ ´a to immediately
arrive at ϵ «

?
2 (this answer, 1.41, and 1.42 should all be accepted as correct).

(b) Orbits are planar. This is a very useful fact, because it allows us to deduce that the orbit
should lie in the same plane as the unique plane that contains both the sun and the straight-
line trajectory described in the problem. If on the straight-line trajectory, on March 21st the
comet is behind the sun (at Aries, since this is the equinox), this means that there is a point in
time on the straight-line trajectory where the comet has equatorial coordinates p0, 0q. Thus,
the orbit lies in the unique plane through the origin, Altair, and Aries. First, this means
that the descending node is at Aries, i.e. the longitude of the ascending node is exactly 180˝.
Second, this allows us to deduce the inclination by four-parts on the spherical triangle with
Altair, Aries, and the projection of Aries onto the equatorial plane:

cos 90 cosp´αq “ sinp´αq cot δ ´ sin 90 cot i

i “ cot´1p´ cot δ sinαq

“ 9.98˝

(c) We can use the polar equation of a conic:

r “
p

1 ` ϵ cospϕ´ ϕ0q

We seek the asymptotes of the hyperbola, so 1 ` ϵ cospϕ´ ϕ0q “ 0:

ϕ “ ϕ0 ` arccos

ˆ

´1

ϵ

˙

“ ϕ0 ˘ 135˝

∆ϕ “ 270.˝

An answer of 90.˝ is also acceptable. Alternatively, one could note that a rectangular hyperbola
has eccentricity of

?
2, and that is the eccentricity of this hyperbola, so the angle is immediately

90˝.
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(d) From part (c), the argument of the periapsis is just the argument of incoming trajectory
(the argument of Altair) plus 135˝. Noting that the argument should be measured from the
ascending node, which is at α “ 180˝, we can simply find the great circle distance from p180˝, 0q

to Altair with Law of Cosines:

cosωin “ cosp90 ´ 0q cosp90 ´ δq ` sinp90 ´ 0q sinp90 ´ δq cosp180 ´ αq

ωin “ arccospcos δ cosp180 ´ αqq

“ 117˝

So the argument of the periapsis is ω “ 117 ` 135 “ 252˝. It is quite easy to accidentally
measure from the wrong point and get 180˝ ˘ 252˝ or even 197˝; these answers have errors
which will propagate to the next part as well.

(e) From part (c) again, we know that the argument of the exit point X is ωX “ 117˝ ` 270˝ “

387˝ ą 360˝, which means that the exit point is in the northern hemisphere. Thus, we can
use Law of Sines on the spherical triangle with the ascending node, the exit point, and the
projection of the exit point onto the equatorial plane:

sin δX
sin i

“
sinωX

sin 90
δX “ arcsinpsinωX sin iq

“ 4˝341

And we can use Law of Cosines on the same triangle to get:

cosωX “ cospαX ´ 128q cospδXq ` sinpαX ´ 180q sinpδXq cos 90

αX “ 12h ` arccos
cosωX

cos δX

“ 13h48m

(f) We can use the conic polar equation to get the orbital distance at the descending node:

rdesc “
p

1 ` ϵ cosp180˝ ´ ωq

“ 1.04p8q ¨ 1011m

From which the velocity perpendicular to the radius is (from angular momentum):

vKdescrdesc “ v8b

vKdesc “
v8b

rdesc
“ 42500m{s

So the proper motion (angular velocity) is:

|µ⃗| “
vKdesc

rdesc
“ 4.059rad{s

Since at the descending node we know the direction of the velocity matches the inclination:

µα “ |µ⃗| cos i

“ 4.00 ¨ 10´7rad{s

“ 0.082as{s

µδ “ ´|µ⃗| sin i

“ ´7.03 ¨ 10´8rad{s

“ ´0.015as{s
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3. (55 points) Finding Friends

In the future, Earth is perfectly spherical and completely covered with water. Sailor Andrew is on a boat
initially positioned at the equator in such that a way that γ, the vernal equinox, is directly overhead.
He observes a star χ with right ascension and declination pα, δq “ p15˝, 10˝q. He wants to chase χ, and
he needs your help.

You may assume the following numerical values for each constant:

• R‘ is Earth’s radius (same as the current day value).

• ω “ 2π{p24 hrsq is Earth’s angular frequency.

• His boat is very fast; its maximum speed is |v| “ ωR‘{4.

• The vernal equinox γ has celestial coordinates p0˝, 0˝q.

• pα, δq “ p15˝, 10˝q.

(a) (2 points) Calculate the angular distance between γ and χ. Express your answer in degrees.

In his starting position, χ is somewhere above his horizon. As he sails to different parts of the planet
and time passes, χ moves around his night sky. He wants sail his boat in order to get χ as close to his
zenith as possible. To make sure he is as efficient as possible, he wants to make a few calculations first.

(b) (2 points) If he does not move his boat from his starting position, calculate the minimum zenith
distance that χ reaches. Express your answer in degrees.

Note: zenith distance is defined as the angular distance to the zenith.

Now, he considers what would happen if he sails straight north at all times.

(c) (3 points) Starting from his intial position when γ is overhead, he directs his boat straight north
and starts sailing with speed |v|. Does χ first cross his north-south meridian or east-west meridian?
Briefly explain why this is the case.

(d) (3 points) Calculate the zenith distance of χ when it first crosses his north-south meridian. Express
your answer in degrees.

(e) (15 points) Calculate the zenith distance of χ when it first crosses his east-west meridian. Express
your answer in degrees.

Let X be the point in his trajectory (in the celestial sphere) at which χ reaches its minimum zenith
distance, and N be the north celestial pole. Note that X is a point in the celestial sphere, and not Earth.

(f) (6 points) Argue that =NγX ` =χXN « π{2, where both angles are spherical angles. Then,
calculate =χXN . Express your answer in degrees.

Note: For this part only, you may assume that the declination of X is small, hence the approxima-
tion.

(g) (15 points) Calculate the minimum zenith distance that χ reaches. Express your answer in degrees.

For this problem:

• You may no longer assume that the declination of X is small. However, you may use the value
of =χXN derived in part (f).

• You are given that the right ascension of X is within pα ˘ 2˝q.

• His trajectory in the celestial sphere is not necessarily a great circle. Be careful when
computing angles and lengths!

He is not satisfied with these results. He feels there should be an optimal way to get χ directly overhead,
as fast as possible. Help him figure out the fastest way to get χ to his zenith.
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(h) (2 points) Given that he is allowed to maneuver his boat however he wants throughout the duration
of his journey, and that he starts from his initial position with γ overhead, show that χ cannot be
at his zenith the first time it culminates, i.e., crosses his north-south meridian.

(i) (7 points) Let t be the fastest time he can get χ to his zenith. Compute the quantity pt´ 20 hrsq,
in seconds.

Solution:

(a) Let N be the north celestial pole and d be our desired distance. Then, the spherical law of
cosines in △Nγχ gives

cos d “ cos 90˝ cos p90˝ ´ δq ` sin 90˝ sin p90˝ ´ δq cosα,

which implies d “ arccos pcos δ cosαq « 17.96˝.

(b) Since χ is to his east, it has not yet culminated. Also, since he is not moving, χ achieves its
minimum zenith distance as it culminates.

One way to figure out this minimum zenith distance is to consider the view from his horizon.
χ moves through the small circle representing the declination line at δ. Since he is located on
the equator, the celestial equator from his perspective passes through the zenith. Therefore,
the minimum zenith distance is the distance between the declination line at δ, and the celestial
equator, which is δ “ 10˝.

An alternative approach is to consider his movement through the celestial sphere. Culmination
occurs when his location and χ have the same right ascension. At this point, their distance is
δ, so this is the minimum zenith distance.

(c) χ starts in the northeastern quadrant of the sky. When χ crosses the north-south meridian,
it changes from the east to west hemisphere. When χ crosses the the east-west meridian, it
changes from the north to south hemisphere.

At time t, his location in the celestial sphere is given by pωt, ωt{4q, so pα, α{4q is a point in his
trajectory. Since α{4 ă δ, χ culminates in his northern sky. Thus, χ passes the north-south
meridian before passing the east-west meridian.

(d) χ culminates when it has the same right ascension as Andrew, so ωt “ α. So, the zenith
distance is given by

δ ´
α

4
« 6.25˝.

(e) Let D be his position in the celestial sphere. When χ first crosses the east-west meridian,
D must satisfy =NDχ “ 90˝, as shown in the diagram below. The red line in the diagram
represents his trajectory in the celestial sphere (this trajectory is not a great circle, so we
cannot use it in our calculations).
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Now, chasing angles:

• The perpendicular condition implies that D is the apex of another great circle (call Γ)
that passes through both D and χ. Γ intersects the equator at a point A, such that
DA “ 90˝.

• As labelled in the diagram, let B and C be the feet of χ and D from N , respectively (so
that =χBA “ =DCA “ 90˝). Since D is the apex of Γ, DA “ CA “ 90˝.

• We know γB “ α and γC “ ωt, so AB “ 90˝ ` α ´ ωt.

• We also know that χB “ δ, and DC “ ωt{4.

Our goal is to find the zenith distance, which is χD. To find this arc, we’ll need ωt, which will
let us solve for the right ascension of D. Let ε “ =χAB “ =DAC. The four-parts formula in
both △χAB and △DAC gives

tan ε “
tanχB

sinAB
“

tanDC

sinAC
.

Substituting known values, this reduces to the equation

tan δ “ cos pωt´ αq tan

ˆ

ωt

4

˙

ùñ ωt “ 4 arctan

ˆ

tan δ

cospωt´ αq

˙

.

We can use this to numerically iterate for ωt. Our initial guess does not need to be good; any
value from around 10˝ to 70˝ converges in a few iterations, giving us ωt « 46.97˝.

Finally, a few more angles:

• =χND “ =BNC “ ωt´ α.

• Nχ “ 90˝ ´ δ.

• ND “ 90˝ ´ ωt{4.

These are all known values. The spherical law of cosines in △NχD now gives

χD “ arccos

ˆ

sin δ sin

ˆ

ωt

4

˙

` cos pωt´ αq cos δ cos

ˆ

ωt

4

˙˙

« 31.42˝.
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(f) The zenith distance χX is minimized when =χXγ “ 90˝. Let X 1 be the foot of X from N , so
that =NX 1γ “ 90˝. Then, if we let β “ =NXχ:

• N,X,X 1 lie on the same great circle, =NXχ ` =χXγ ` =γXX 1 “ 180˝, which implies
=γXX 1 “ 90 ´ β.

• Since the latitude ofX is small, and△XX 1γ is right, we can say that =γXX 1`=XγX 1 «

90˝, so =XγX 1 « β. This approximation is valid since γX 1 “ ωt “ 4X 1X, so △XX 1γ
can be approximated by a flat right triangle.

• Since =NγX 1 “ 90˝, β and =NγX add to 90˝, as desired.

To compute β, we can use our approximation of △XX 1γ as a flat right triangle to say that
tanβ « 1{4, so β « 14˝.

(g) Consider △NXχ. We know the lengths of two sides, Nχ “ 90˝ ´ δ and NX “ 90˝ ´ ωt{4,
and the values of a nested and adjacent angle, =N “ ωt ´ α and =X “ β. We want to find
the length of the zenith angle, which is Xχ. Unfortunately, we can’t directly solve for Xχ,
but we may first try solving for ωt using the information we already have, which will give us
enough information about the triangle to solve for Xχ.

Applying the four parts formula:

sin

ˆ

ωt

4

˙

cos pωt´ αq “ cos

ˆ

ωt

4

˙

cot p90˝ ´ δq ´ sin pωt´ αq cotβ.

As in part (e), we can isolate ωt and try to solve this equation with numerical iteration:

ωt “ 4 arctan

ˆ

tan δ

cos pωt´ αq
´

sin pωt´ αq cotβ

cos pωt{4q cos pωt´ αq

˙

.

Unfortunately, this diverges for most values. Luckily, we’re given that ωt is within pα ˘ 2˝q,
which is a good enough range for us to still find a solution at ωt « 16.45˝.

Finally, the law of sines in △XχN gives

χX “ arcsin

ˆ

cos δ sin pωt´ αq

sinβ

˙

« 6.06˝.

(h) In order for χ to be directly overhead, he needs to have the same declination and right ascension
as χ.

The amount of time he needs to increase his latitude to δ is bounded below by

δ{pv{R‘q “
4δ

ω
,

which is when he travels straight north at all times.

On the other hand, the amount of time it takes him to have the same right ascension is bounded
above by

α{pω ´ v{R‘q “
4α

3ω
,

which is when he travels straight west at all times. Since 4α{3 ă 4δ, he cannot get χ to his
zenith when it first culminates.
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(i) From part (h), he cannot get χ directly overhead the first time it culminates. Therefore, his
best strategy is to try to get χ to his zenith the next time it appears above his horizon. After
time t, the change in his right ascension due to the rotation of the earth is ωt. Therefore, to
optimize his distance travelled, he should travel along a great circle (defined on the surface of
the Earth) that increases his longitude by p2π ` α ´ ωtq, and increases his latitude by δ.

Let N be the north celestial pole, and Y be his stopping point, which has coordinates p2π `

α´ωt, δq. Note that the coordinates of Y are his longitude and latitude on Earth, and not in
the celestial sphere. Also, Y γ “ ωt{4, since the maximum speed his boat can travel is ωR‘{4.
Now, the spherical law of cosines in △NY γ gives

cos

ˆ

ωt

4

˙

“ cos δ cos pα ´ ωtq,

so
ωt “ 4 arccospcos δ cos pα ´ ωtqq.

Now we can numerically iterate. Using t “ 20 hrs as a first guess, we get ωt “ 300.2˝, which
gives pt ´ 20 hrsq « 48 s. To account for approximation errors, a large range of values in this
general vicinity are acceptable.
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